On 4 Squares in Arithmetic Progression

نویسنده

  • IAN KIMING
چکیده

x1 − 2x2 + x3 = 0 x2 − 2x3 + x4 = 0 are given by (x1, x2, x3, x4) = (±1,±1,±1,±1). Now, the above variety is an intersection between 2 quadrics in P. In general – i.e., except for the possibility of the variety being reducible or singular – an intersection between 2 quadrics in P is (isomorphic to) an elliptic curve and there is an algorithm that brings the curve to Weierstraß form by means of a birational map. We will not go into the general algorithm but just study it in concrete terms via the example at hand.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Progressions of Four Squares

Suppose a, b, c, and d are rational numbers such that a2, b2, c2, and d2 form an arithmetic progression: the differences b2−a2, c2−b2, and d2−c2 are equal. One possibility is that the arithmetic progression is constant: a2, a2, a2, a2. Are there arithmetic progressions of four rational squares which are not constant? This question was first raised by Fermat in 1640. There are no such progressio...

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Arithmetic Progressions of Three Squares

In this list there is an arithmetic progression: 1, 25, 49 (common difference 24). If we search further along, another arithmetic progression of squares is found: 289, 625, 961 (common difference 336). Yet another is 529, 1369, 2209 (common difference 840). How can these examples, and all others, be found? In Section 2 we will use plane geometry to describe the 3-term arithmetic progressions of...

متن کامل

Lattice Points on Circles, Squares in Arithmetic Progressions and Sumsets of Squares

Let σ(k) denote the maximum of the number of squares in a+b, . . . , a+kb as we vary over positive integers a and b. Erdős conjectured that σ(k) = o(k) which Szemerédi [30] elegantly proved as follows: If there are more than δk squares amongst the integers a+b, . . . , a+kb (where k is sufficiently large) then there exists four indices 1 ≤ i1 < i2 < i3 < i4 ≤ k in arithmetic progression such th...

متن کامل

Arithmetic progressions of four squares over quadratic fields

Let d be a squarefree integer. Does there exist four squares in arithmetic progression over Q( √ d )? We shall give a partial answer to this question, depending on the value of d. In the affirmative case, we construct explicit arithmetic progressions consisting of four squares over Q( √ d ).

متن کامل

Squares in Arithmetic

I. Let Q(N; q; a) denote the number of squares in the arithmetic progression qn+a; n = 1; 2; ; N; and let Q(N) be the maximum of Q(N; q; a) over all non-trivial arithmetic progressions qn + a. It seems to be remarkably diicult to obtain non-trivial upper bounds for Q(N). There are currently two proofs known of the weak bound Q(N) = o(N) (which is an old conjecture of Erdd os) and both are far f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008